
CORRESPONDENCE

used in coupling structures for solid-state oscillators and in wave-

guide filter and impedance matching applications. The noncontacting

movable-susceptance element is easy to realize and should find

application in numerous laboratory devices.

J. G. BRYAN’

F. J. ROSENBAUM

Elec. Eng. Dep.

Washington Univ.

St. Louis, Mo. 63130

REFERENCES

[1]

[2]

A

C. G. Montgomery, R. H. Dicke, and E. M. Purcell, l%zcipks of Microwave
CiVcz@ (M.I.T. Radiation Lab. Series), vol. S. Boston, Mass.: Boston Techni.
cal Publishers, 1964, pp. 162-167.
N. Marcuvitz, The TVawguide Harzdbook (M. I.T. Radiation Lab. Series), vol. 10.
Boston, Mass. Boston Technical Publishers, 1964, Pp. 2 t 8–221.

Now wuth California Microwave, Sunnyvale, Calif. 94086.

Class of Equiripple Functions which Complement

the Achieser (or Zolotarev) Polynomials

Abstract—A symmetrical cascade of N commensurate transmis-

sion lines having equal ripple performance over a passband centered

at the quarter-wavelength frequency may be synthesized using

Achleser (or Zolotarev) polynomials for N odd. This correspondence

identifies the solution of the case where N is even, and a new class

of functions which complement these polynomials is identified.

Levy [1] has made available for engineering use a class of odd

polynomials, discovered by Achieser [2] which are equiripple in two

symmetrical line segments [ — 1, — h ] and [k, 1 ]. These polynomials,

however, do not completely solve the approximation problem for

equiripple performance from a symmetrical cascade of equal-length

transmission line elements (TLEs), all with the same propagation

constant and electrical length O.

As the author [3] has observed, the insertion loss function, PL,

of such a cascade may be written

F’L = 1 + [sin fTQ~_l (COS6’)]’ = 1 + P~2(sin 0, cos O) (1)

where N is the number TLEs. More specifically, Q~-1 (COS O) is an

even function of cos 0 for N odd and an odd function of cos o for N

even. For N odd, putting x =sin o and Xz = 1 —cosz 8,

sin 61Q~_1(cos @) = P~(sin O) (2)

where PN (x) is an odd polynomial. When sin o = 1 at midband, it is

readily seen that the Achieser polynomials will give equiripple per-

formance over a given band centered at the quarter-wave frequency

with band edges at o = sin-112 h and o = r —sin–l h. The polynomials of

degree N= 2n, which are equiripple in the same intervals are

[(Tn2& -1- x’)/(1 - x’)] (3)

but the P,n(sin O) which is appropriate to the bandpass case cannot

be expressed in this form.1

It is the object of this correspondence to identify the missing

functions and so solve the approximation problem for equal-ripple

behavior for cascades of the type under consideration. For N even,

we require a function

P%(x) = a+l – 2 @,t-, @ (4)

which is equiripple over the given intervals of x, where Qn–l is a

polynomial of degree n – 1 with real coefficients. Then with x = sin O,

Manuscript received March 4, 1971; revised June 14, 1971.
1 For a problem in which these classes of polynomials do complement each

other see [4].

891

I ‘f PLANE

I

Fig. 1. Map of real axis of x ~lane.

the function P1. (x) will give equiripple performance over a band

centered at o = Ir/2 and the synthesis will result in a symmetrical

cascade having an even number of TLEs.

The functions (4) are defined parametrically by

‘N(’)‘W&3%%&+)”:] “)
k cn (u)

y . ——–— (6)
NA2 – snz (u)

where x = sn M, K is the complete elliptic integral of the first kind,

and all the periodic functions have a common mc)dulus, k, chosen to

satisfy the equation, NM =K.

The elliptic function in (5) is clearly of the type used by Zolotarev

[5] in his problem. It has however “sine like” form rather than the

familiar “cosine like” equiripple form. For this reason, and because

no other justification is given for its correctness, the analytic fea-

tures of the following proof are more detailed than those given by

Achieser [2] and Levy [1] while, in the interest of brevity, the formal

features are left to the reader.

In the first place, (6) maps the interior of the rectangle, on a

properly defined Riemann surface, u, bounded by (O +jK’) and

(K+ jK’) into the upper half of the x plane while the transformation

()H :+u

y= —

()
H :–u

(7)

maps the same rectangle in the u plane into the exterior of the unit

circle in the y plane. Fig. 1 establishes the location of points in the y

plane which correspond to the points of greatest interest in the x

plane, as shown in [1, Fig. 3 ].

For \ x I between x and 1, (5) can be written

p,JT(f) = h [jIn]. (8)

Thus as Ix] decreases from 1 to k, P~(x) oscillates n – 1 times be-

tween &1, taking on the value at 1, Im iejT@-*Jl = ~ 1, depending on

whether n is even or odd; so that PN (x) has the required equiripple

performance in the bands of interest.

It remains to show that it has the required form and it will be

convenient to write,

~ = _ sn (M) cn (u)

~sn’ (M) – sn’ (u)

and

j cn (M) sn (u)
1/1 — “1? = ——————-———.-

/sn’ (M) – sn’ (u)

(9)

(10)
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Now, using a well-known addition theorem for the theta functions,

K’H(M)H,(M)H(u) H,(It)
(11).xdl – ~ = &02(o)H(JI + U)H(M – ~)

so that

~N(M .+ Ii) – HN(M – W) ___ ~lz)——
P,v($)/(a@ – x’) = c

H(U) If I(U) Hn-’(M + U) W-’(.W – u)

where C is a real constant. Denoting the fraction on the right by

F(u), the argument will be complete when we show that the function,

j(~), defined by F(u) together with (6), is an even polYnomial in x
with real coefficients.

That ~(x) is a polynomial of degree N– 2 is evident from the fol-

lowing.

1) j(x) is single valued.

2) ~(x) is analytic everywhere except at the point of infinity.

3) The singularity of ~(x) at infinity is a pole of order N –2,

for it is well known that an analytic function whose only singularity

is a pole at infinity of order m is a polynomial of degree m. Then, to

show that it is an even polynomial with real coefficients, it is suffi-

cient to show that it is even and real on the portion of the real axis

between –xl and +x1, by the principle of analytic continuation.

Now f(x) is single valued because F(u) is doubly periodic in u

with the same periodicity rectangle that x has as a function of u. So

that, although to each value of x there corresponds an infinite num-

ber of values of u, each in turn gives the same value of F(a). To show

that F(u) has the required property is a formal matter; and the

reader is referred to [1]. One simply replaces u by u +2K and

u +2jK’, in turn, in the defining equations and shows that

F(u) = F(U + 2K) = F(M + 23X’) (13)

making use of the fact that NM=K.

By the function of a function theorem for analytic functions, ~(x)

is analytic except at the singularities of F(U) as a function of u and

the singularities of u as function of x. Both of these sets of singularities

are readily seen’ to be finite in number. It follows then, from a well-

known theorem for single-valued analytic functions with a finite

number of singularities, that ~(x) cannot be bounded in the neighbor-

hood of any of its singularities. Hence, in searching for the singular-

ities of ~(x), we need not concern ourselves with the critical points of

(6) since~(x) can be unbounded only when F(u) is unbounded. More-

over, because of the periodicity of F(u), we may limit the search for

singular points to values of u in a periodicity rectangle determined by

(+ K, fjK’). NOW, since II(u) is bounded in the finite plane, in-

finities of F(u) occur only at zeros of its denominator. The zeros of

H(u) and EI1(u) are simple and occur at u = O and u = –K, but it is

readily seen that they are cancelled by zeros of the numerator of F(u).

Thus the only singularities of F(u) in the periodicity rectangle occur

at u = ~ M. Both of these values correspond to x = m and we con-

clude that ~(x) is analytic in the entire plane except at the point of

infinity.

It is a formal matter to show that ~(~) /xN-Z approaches a finite

limit as x+@. Thus the only singularity of ~(x) is a pole of order

N–2 at infinity.

Finally, from the mapping of the x plane (given in Fig. 1) and

the evaluation of PN (x) as Im [yn ] for values of x between —xl and

+x1, it follows the P~(x) is a real odd function of x on this line seg-

ment. Thus j(x) is a real even polynomial for values of x on this line

segment.
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Computer Program Descriptions

Computer Solution of Transient and Time Domain

Thin-Wire Antenna Problems

PURPOSE : swnw is a general purpose computer program
which analyzes the transient and time domain
electromagnetic behavior of straight-wire scat-
terers and antennas (both transmitting and receiv-
ing),

LANGUAGE : FORTRAN.

AUTHORS : Alethia M. Auckenthaler and C. Leonard Bennett.

Sperry Rand Research Center, Sudbury, Mass.

01776.

AVAILABILITY: Asls-NAps Document No. NAPS-01541,

DESCRIPTION: A general purpose computer program that analyzes

the transient and time domain electromagnetic

behavior of transmitting, receiving, and scattering straight-wire

antennas is presenter. The program allows an arbitrary number of

Manuscript received February 15, 197 1; revised June 4, 1971.
For program listing, order document NAPS.01 541 from AS IS National Auxiliary

Publications Service, CIO CCM Information Corporation, 909 Third Avenue, New
York, N, Y. 100’22; remitting $2.oo per microfiche or $5.00 per photocopy.

transmit or receive points, each with arbitrary source or load resis-

tances and arbitrary distributed resistive loading along the wire
length. The program also permits the computation of the far zone
normalized field in arbitrary directions. The flexibility in both the
input and output of this program and its applicability to the general

time varying case allows the solution of a wide range of practical engi-
neering problems.

The straight-wire scattering and antenna problem which is illus-
trated in Fig. 1 consists of a straight wire located on the x axis with

some excitation. For the case of the scattering or receiving antenna

problem the excitation is the x component of the incident wave E
which makes an angle of @ with the plane perpendicular to the x axis.
For the case of the transmitting antenna problem the excitation is a

voltage generator with a source resistance R~. These excitations
produce currents 1(x) along the wire which in turn produce a far
zone field H’ in the ~’ direction.

The technique used to solve this wire scattering problem [1], [2]
is a specialization of the integral equation technique used in the time
domain solution of the more general problem of scattering by sur-
faces [3]. Since the wire is assumed to be thin (e.g., the wire radius is
much less than the width of an incident Gaussian shaped pulse), the

wire current flows only in the axial direction and the more compli-

cated surface integral equation reduces to a single space time scalar


