CORRESPONDENCE

used in coupling structures for solid-state oscillators and in wave-
guide filter and impedance matching applications. The noncontacting
movable-susceptance element is easy to realize and should find
application in numerous laboratory devices.
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A Class of Equiripple Functions which Complement
the Achieser (or Zolotarev) Polynomials

Abstract—A symmetrical cascade of N commensurate transmis-
sion lines having equal ripple performance over a passband centered
at the quarter-wavelength frequency may be synthesized using
Achieser (or Zolotarev) polynomials for N odd. This correspondence
identifies the solution of the case where N is even, and a new class
of functions which complement these polynomials is identified.

Levy [1] has made available for engineering use a class of odd
polynomials, discovered by Achieser [2] which are equiripple in two
symmetrical line segments [—~1, —A}and [\, 1]. These polynomials,
however, do not completely solve the approximation problem for
equiripple performance from a symmetrical cascade of equal-length
transmission line elements (TLEs), all with the same propagation
constant and electrical length .

As the author [3] has observed, the insertion loss function, Pz,
of such a cascade may be written

Py =14 [sin 6Qx_1 (cos 6) ]2 = 1 4 Py?sin 6, cos 0) @

where N is the number TLEs. More specifically, Qw.1(cos 8) is an
even function of cos 6 for N odd and an odd function of cos ¢ for N
even. For N odd, putting x =sin @ and x% =1 —cos28,

sin 8Qn_1(cos 8) = Px(sin ) 2)

where Py(x) is an odd polynomial. When sin #=1 at midband, it is
readily seen that the Achieser polynomials will give equiripple per-
formance over a given band centered at the quarter-wave frequency
with band edges at # =sin™'/2 X and 6 == —sin~! \. The polynomials of
degree N =2n, which are equiripple in the same intervals are

[(Ta20® — 1 = N2)/(1 — \%)] @

but the Ps,(sin 6) which is appropriate to the bandpass case cannot
be expressed in this form.*

It is the object of this correspondence to identify the missing
functions and so solve the approximation problem for equal-ripple
behavior for cascades of the type under consideration. For N even,
we require a function

P2n<x) = 90\/1_.;_—9; Qn-l(zz) (47)

which is equiripple over the given intervals of x, where Q. is a
polynomial of degree # —1 with real coefficients. Then with x =sin 8,

Manuscript received March 4, 1971; revised June 14, 1971.
1 For a problem in which these classes of polynomials do complement each
other see [4].
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Fig. 1. Map of real axis of x plane.

the function Pa(x) will give equiripple performance over a band
centered at §==/2 and the synthesis will result in a symmetrical
cascade having an even number of TLEs.

The functions (4) are defined parametrically by

A HM + )\ (HM — )\

Px(x) = 2_] (HfM _ u)) - (H(M + u) ] ®)
g NenG) (©)
RV, =y o)

where A=sn M, K is the complete elliptic integral of the first kind,
and all the periodic functions have a common modulus, k, chosen to
satisfy the equation, NM =K.

The elliptic function in (5) is clearly of the type used by Zolotarev
[5] in his problem. It has however “sine like” form rather than the
familiar “cosine like” equiripple form. For this reason, and because
no other justification is given for its correctness, the analytic fea-
tures of the following proof are more detailed than those given by
Achieser [2] and Levy [1] while, in the interest of brevity, the formal
features are left to the reader.

In the first place, (6) maps the interior of the rectangle, on a
properly defined Riemann surface, #, bounded by (0+jK’) and
(K + jK'’) into the upper half of the x plane while the transformation

K
y = f..(y___l__u_)_ %)

o5

maps the same rectangle in the # plane into the exterior of the unit
circle in the y plane. Fig. 1 establishes the location of points in the y
plane which correspond to the points of greatest interest in the x
plane, as shown in [1, Fig. 3].

For | x| between A and 1, (5) can be written

Py(x) = 1m [y~]. &

Thus as |«| decreases from 1 to A, Py(x) oscillates #n—1 times be-
tween -+1, taking on the value at A, Im [¢/"»H]= + 1, depending on
whether 7 is even or odd; so that Py(x) has the required equiripple
performance in the bands of interest.

It remains to show that it has the required form and it will be
convenient to write,

_ s (M) cn (u) ©
vsn? (M) — sn? (u)

and

so JonUDsn @)

V1= &? (10)
Vesn? (M) — sn? ()
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Now, using a well-known addition theorem for the theta functions,

— K'HM)H (MYH (u) H1(1)

“IEEOEM + wHM — w)

1 — (11)

so that

H¥N(M 4+ u) — HVN(M — u)

(12)
H)H ((wH (M + w)HY M — u)

Py(x)/(x/T— 2% = C

where C is a real constant. Denoting the fraction on the right by
F(u), the argument will be complete when we show that the function,
f(x), defined by F(u) together with (6), is an even polynomial in x
with real coefficients.

That f(x) is a polynomial of degree N—2 is evident from the fol-
lowing.

1) f(x) is single valued.

2) f(x) is analytic everywhere except at the point of infinity.

3) The singularity of f(x) at infinity is a pole of order N—2,
for it is well known that an analytic function whose only singularity
is a pole at infinity of order m is a polynomial of degree m. Then, to
show that it is an even polynomial with real coefficients, it is suffi-
cient to show that it is even and real on the portion of the real axis
between —x; and -x;, by the principle of analytic continuation.

Now f(x) is single valued because F(u) is doubly periodic in %
with the same periodicity rectangle that x has as a function of #. So
that, although to each value of x there corresponds an infinite num-
ber of values of #, each in turn gives the same value of F(x). To show
that F(x) has the required property is a formal matter; and the
reader is referred to [1]. One simply replaces % by #+2K and
#+27K’, in turn, in the defining equations and shows that

F(w) = F(u + 2K) = F(u + 2K")

making use of the fact that NM =K.

By the function of a function theorem for analytic functions, f(x)
is analytic except at the singularities of F(x) as a function of % and
the singularities of # as function of x. Both of these sets of singularities
are readily seen'to be finite in number. It follows then, from a well-
known theorem for single-valued analytic functions with a finite

(13)
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number of singularities, that f(x) cannot be bounded in the neighbor-
hood of any of its singularities. Hence, in searching for the singular-
ities of f(x), we need not concern ourselves with the critical points of
(6) since f(x) can be unbounded only when F(x) is unbounded. More-
over, because of the periodicity of F(x), we may limit the search for
singular points to values of # in a periodicity rectangle determined by
(K, +jK’). Now, since H(») is bounded in the finite plane, in-
finities of F(u) occur only at zeros of its denominator. The zeros of
H(u) and H;(u) are simple and occur at =0 and 4= —K, but it is
readily seen that they are cancelled by zeros of the numerator of F(u).
Thus the only singularities of F(x) in the periodicity rectangle occur
at =+ M. Both of these values correspond to x= « and we con-
clude that f(x) is analytic in the entire plane except at the point of
infinity.

It is a formal matter to show that f(x)/x¥—2 approaches a finite
limit as x— . Thus the only singularity of f(x) is a pole of order
N —2 at infinity.

Finally, from the mapping of the x plane (given in Fig. 1) and
the evaluation of Py(x) as Im[y*] for values of x between —x, and
—+xy, it follows the Py (x) is a real odd function of x on this line seg-
ment. Thus f(x) is a real even polynomial for values of x on this line
segment.
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transmit or receive points, each with arbitrary source or load resis-
tances and arbitrary distributed resistive loading along the wire
length., The program also permits the computation of the far zone
normalized field in arbitrary directions. The flexibility in both the
input and output of this program and its applicability to the general
time varying case allows the solution of a wide range of practical engi-
neering problems.

The straight-wire scattering and antenna problem which is illus-
trated in Fig. 1 consists of a straight wire located on the x axis with
some excitation. For the case of the scattering or receiving antenna
problem the excitation is the x component of the incident wave E?
which makes an angle of 6 with the plane perpendicular to the x axis.
For the case of the transmitting antenna problem the excitation is a
voltage generator with a source resistance R, These excitations
produce currents I(x) along the wire which in turn produce a far
zone field H* in the ¥* direction.

The technique used to solve this wire scattering problem [1], [2]
is a specialization of the integral equation technique used in the time
domain solution of the more general problem of scattering by sur-
faces [3]. Since the wire is assumed to be thin (e.g., the wire radius is
much’less than the width of an incident Gaussian shaped pulse), the
wire current flows only in the axial direction and the more compli-
cated surface integral equation reduces to a single space time scalar



